Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564513

RESUMO

Methods sections are often missing essential details. Methodological shortcut citations, in which authors cite previous papers instead of describing the method in detail, may contribute to this problem. This meta-research study used 3 approaches to examine shortcut citation use in neuroscience, biology, and psychiatry. First, we assessed current practices in more than 750 papers. More than 90% of papers used shortcut citations. Other common reasons for using citations in the methods included giving credit or specifying what was used (who or what citation) and providing context or a justification (why citation). Next, we reviewed 15 papers to determine what can happen when readers follow shortcut citations to find methodological details. While shortcut citations can be used effectively, they can also deprive readers of essential methodological details. Problems encountered included difficulty identifying or accessing the cited materials, missing or insufficient descriptions of the cited method, and shortcut citation chains. Third, we examined journal policies. Fewer than one quarter of journals had policies describing how authors should report previously described methods. We propose that methodological shortcut citations should meet 3 criteria; cited resources should provide (1) a detailed description of (2) the method used by the citing authors', and (3) be open access. Resources that do not meet these criteria should be cited to give credit, but not as shortcut citations. We outline actions that authors and journals can take to use shortcut citations responsibly, while fostering a culture of open and reproducible methods reporting.


Assuntos
Neurociências , Políticas
2.
PLoS Biol ; 20(9): e3001783, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095010

RESUMO

Western blotting is a standard laboratory method used to detect proteins and assess their expression levels. Unfortunately, poor western blot image display practices and a lack of detailed methods reporting can limit a reader's ability to evaluate or reproduce western blot results. While several groups have studied the prevalence of image manipulation or provided recommendations for improving western blotting, data on the prevalence of common publication practices are scarce. We systematically examined 551 articles published in the top 25% of journals in neurosciences (n = 151) and cell biology (n = 400) that contained western blot images, focusing on practices that may omit important information. Our data show that most published western blots are cropped and blot source data are not made available to readers in the supplement. Publishing blots with visible molecular weight markers is rare, and many blots additionally lack molecular weight labels. Western blot methods sections often lack information on the amount of protein loaded on the gel, blocking steps, and antibody labeling protocol. Important antibody identifiers like company or supplier, catalog number, or RRID were omitted frequently for primary antibodies and regularly for secondary antibodies. We present detailed descriptions and visual examples to help scientists, peer reviewers, and editors to publish more informative western blot figures and methods. Additional resources include a toolbox to help scientists produce more reproducible western blot data, teaching slides in English and Spanish, and an antibody reporting template.


Assuntos
Neurociências , Proteínas , Anticorpos , Western Blotting
3.
Clin Sci (Lond) ; 136(15): 1139-1156, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822444

RESUMO

Recent work has raised awareness about the need to replace bar graphs of continuous data with informative graphs showing the data distribution. The impact of these efforts is not known. The present observational meta-research study examined how often scientists in different fields use various graph types, and assessed whether visualization practices have changed between 2010 and 2020. We developed and validated an automated screening tool, designed to identify bar graphs of counts or proportions, bar graphs of continuous data, bar graphs with dot plots, dot plots, box plots, violin plots, histograms, pie charts, and flow charts. Papers from 23 fields (approximately 1000 papers/field per year) were randomly selected from PubMed Central and screened (n=227998). F1 scores for different graphs ranged between 0.83 and 0.95 in the internal validation set. While the tool also performed well in external validation sets, F1 scores were lower for uncommon graphs. Bar graphs are more often used incorrectly to display continuous data than they are used correctly to display counts or proportions. The proportion of papers that use bar graphs of continuous data varies markedly across fields (range in 2020: 4-58%), with high rates in biochemistry and cell biology, complementary and alternative medicine, physiology, genetics, oncology and carcinogenesis, pharmacology, microbiology and immunology. Visualization practices have improved in some fields in recent years. Fewer than 25% of papers use flow charts, which provide information about attrition and the risk of bias. The present study highlights the need for continued interventions to improve visualization and identifies fields that would benefit most.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...